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Asking Questions and Making Changes to this Document

This document can be found in the stratis-docs repo, and is written using LYX 2.3.0. Please
use the mailing list (stratis-devel@lists.fedorahosted.org), or open an issue on GitHub, for any
questions or issues that arise.

Executive Summary

Stratis is a new tool that meets the needs of Red Hat Enterprise Linux (RHEL) users (among
others) calling for an easily configured, tightly integrated solution for storage that works within
the existing Linux storage management stack. To achieve this, Stratis prioritizes a straightforward
command-line experience, a rich API, and a fully automated, externally-opaque approach to
storage management. It builds upon elements of the existing storage stack as much as possible,
to enable delivery within 1-2 years. Specifically, Stratis initially plans to use device-mapper and
the XFS filesystem, but may incorporate other technology in the future.

Part I

Background

1 Problem Statement

Linux has gained many storage-related features over the years, but each of these features has
required the user to manage the configuration of these features in a layered, additive manner.
Genuinely new and useful features such as thin provisioning, RAID, and multipath are dependent
on the user correctly configuring many different layers via different tools to achieve a complete
result. Furthermore, since each layer’s configuration tool only has a command-line interface
(CLI), higher-level management tools must each construct input and parse the human-oriented
output for each these layers’ CLI. This causes a waste of effort and opportunity for bugs, as each
higher-level tool builds its own internal API for the feature on top of the lower level tool’s CLI.
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1.1 Goal: Bring advanced features to users in a simpler form

Linux storage features are modular and stackable. This promotes flexibility and allows indepen-
dent development efforts, but leads to a huge number of possible configurations. This requires
the user manage the stack because there’s not enough commonality to enable effective automa-
tion.

But really, there is a single configuration that can work for most use cases. By assuming
a fixed layering of storage features (some perhaps optional), we enable software to effectively
manage these on behalf of the user.

Automated management then leads to less administrative burden placed on the user. The
user still specifies resources, desired features, and results – what hardware resources to use,
what features to enable, how storage should be logically presented – using a smaller number
of concepts with well-defined relations. Software manages the rest, and handles most runtime
issues without user involvement.

1.2 Proposal: Implement a hybrid Volume Managing Filesystem

In the past ten years, volume-managing filesystems (VMFs) such as ZFS and Btrfs have come
into vogue and gained users, after being previously available only on other UNIX-based operating
systems. These incorporate what would be handled by multiple tools under traditional Linux
into a single tool. Redundancy, thin provisioning, volume management, and filesystems become
features within a single comprehensive, consistent configuration system. Where a traditional
Linux storage stack exposes the layers of block devices to the user to manage, VMFs hide
everything in a pool. The user puts raw storage in the pool, the VMF manages the storage in
the pool, providing the features the user wants, and allows the user to create filesystems from
the pool without being concerned with the details.

Unfortunately, existing VMFs aren’t easily used on enterprise Linux distributions like RHEL.
ZFS isn’t an option RHEL can embrace due to licensing, Ubuntu notwithstanding. Btrfs has no
licensing issues, but maintaining up-to-date support for in it in enterprise kernels proved difficult.

We can see from the many developer-years of effort that have gone into these two projects
that writing a VMF is a tremendous, time-consuming undertaking. We also can hear our users
demanding their features and ease of use.

Rather than writing a new VMF from scratch, Stratis proposes to satisfy VMF-like require-
ments by managing existing technologies on behalf of the user, so that users can manage their
storage using high-level concepts like “pool” and “filesystem”, and remain unconcerned with the
more complex details under the covers.

This is also a chance to learn from the benefits and shortcomings of existing solutions. We
should not just copy ZFS. ZFS is now fifteen years old and the storage landscape has changed
since its design. We seek to satisfy the same needs that ZFS does, but also integrate more tightly
into today’s increasingly automated storage management solutions that span the data center as
well as the local machine. This is made possible by a hybrid, userspace-based approach.

1.3 Requirements

1. Make features easier to use in combination with each other : thin provisioning, snapshots,
integrity, redundancy, multipath, encryption, hardware reconfiguration, monitoring, and a
caching tier

2. Simple and comprehensive command-line interface

(a) Simple

i. Single way to do things

ii. Do not expose internal implementation details. Gives Stratis more implementa-
tion freedom, and of little value since internals are too complex to make manual
user repairs practical
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iii. User typically will not use on a daily basis

A. Consistent commands that a user can guess at, and probably be right

B. Require explicitness from the user for potentially data-losing operations, such
as giving a “–force” option.

(b) Comprehensive

i. User must master only one tool

ii. Helps user learn: if task not possible through tool, it must not be worth doing
(or a good idea)

3. Programmatic language-neutral API for higher-level management tool integration

(a) A clear next step for users after hitting the limitations of scripting the CLI

(b) Encourages tight integration and use of all features by higher-level tools

4. Event-driven monitoring and alerts

(a) Monitoring and alert messages expressed in terms of Stratis user-visible simple con-
cepts, not implementation details

(b) Low CPU/memory overhead to monitoring

(c) Only alert when action really is needed

(d) Fail gracefully if alerts are unheeded

5. Eliminate manual resizing of filesystems

(a) Numerous problem reports throughout the years indicate that resizing filesystems is
an area where users feel unease, due to potential data loss if a mistake is made. No
real reason to require the user do this any more.

(b) Simpler for DevOps

(c) Makes storage “demand-allocated”, similar to virtual memory. Current technology
allows us to manage a filesystem’s actual usage up (growfs) or down (thin provision-
ing).

6. Initrd-capable

(a) Allows root fs, all other filesystems except /boot to use Stratis. Needed for ease of
use

(b) Limited environment – no Python or DBus – but can use device-mapper

7. Bootable (planned – see 11.6)

(a) Feels like a “real” filesystem if no secondary filesystem is needed for boot

(b) Enables Stratis features to be used by system image, e.g. booting from a snapshot,
and allowing /boot to grow

(c) Requires explicit support in bootloader (Grub2)

(d) device-mapper not available

8. Adaptable to emerging storage technologies

(a) Persistent memory

i. Block-appearing pmem can be used by Stratis

ii. byte-addressible pmem see 11.6

9. Implementable in 1-2 years
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(a) We’re already behind, waiting another 10 years isn’t an option

Part II

Solution Overview

2 Introduction

Stratis is a local storage solution that lets multiple logical filesystems share a pool of storage that
is allocated from one or more block devices. Instead of an entirely in-kernel approach like ZFS or
Btrfs, Stratis uses a hybrid user/kernel approach that builds upon existing block capabilities like
device-mapper, existing filesystem capabilities like XFS, and a user space daemon for monitoring
and control.

The goal of Stratis is to provide the conceptual simplicity of volume-managing filesystems,
and surpass them in areas such as monitoring and notification, automatic reconfiguration, and
integration with higher-level storage management frameworks.

3 Stratis and the Linux storage stack

Stratis simplifies many aspects of local storage provisioning and configuration. This, along with
its API, would let projects dependent on configuring local storage do so much more easily.

For example, installing the OS to a Stratis pool using Anaconda. After selecting the disks to
use for the pool, the first benefit would be the complex flow around sizing of filesystems could
be omitted. Second, since Stratis has an API, Anaconda could use it directly, instead of needing
work in Blivet to build an API on top of command line tools.

Other management tools like Cockpit, virtualization products like RHEV, or container prod-
ucts like Atomic would find it much simpler and less error-prone to use storage and snapshots
with Stratis, for the same two reasons: don’t need to worry about per-filesystem sizing (only that
the pool has enough “backing store”); and the API, which allows better tool-to-tool integration
than using CLI programmatically.

Stratis

D-Bus

device-mapper libcryptsetup libxfs libmultipath

Udisks2Blivet

Anaconda Cockpitstratis-cli

etc.

libblockdev

Figure 1: Future Stratis Position in the Linux Storage Management Stack
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There are existing libraries that handle CLI-to-API for both Anaconda and Cockpit. These
could be extended to support Stratis, or not.

4 Conceptual Model

4.1 Blockdevs, pools, and filesystems

Stratis’s conceptual model consists of blockdevs, pools, and filesystems. A pool is created
from one or more blockdevs (block devices), and then filesystems are created from the pool.
Filesystems are mountable hierarchical collections of files that allocate backing storage from the
pool as it is needed. The key difference between a Stratis filesystem and a conventional Unix
filesystem is that Stratis filesystem sizing and maintenance are not managed by the user, but by
Stratis.

4.2 Attributes and features of a pool

A pool is created with an initial set of one or more blockdevs. Blockdevs may also be added after
the pool is created. Blockdevs may eventually be removable from a pool, if certain preparations
are performed and conditions are met. The pool’s primary collection of blockdevs is called the
data tier.

A pool also optionally has a cache tier that uses a separate collection of faster blockdevs to
improve performance instead of increase the pool’s capacity.

Both tiers have their own independent data redundancy level. which may be none, raid1,
raid5, raid6, or raid10 (the default is none).

Since a single system may have multiple pools, each pool has a name, as does each filesystem
within a pool. These are both settable by the user. Blockdevs, pools, and filesystems also have
UUIDs, which are not settable by the user.

Stratis supports large numbers of blockdevs and up to 2
24filesystems per pool. However,

practical limits on these values may compel users to restrict themselves to smaller numbers of
blockdevs and filesystems.

A new filesystem is either a new empty filesystem or a snapshot of an existing filesystem
within the pool. Stratis currently does not distinguish between snapshots and filesystems. (May
change.)

5 Scalability and Performance Considerations

Stratis doesn’t optimize performance within its data tier, instead focusing there on flexibility and
integrity. Improved performance is the job of caching tier, or perhaps building the pool using
blockdevs with higher IOPs, such as SSDs.

Part III

Implementation

6 Software Components

Stratis consists of a command-line tool, stratis, and a service, stratisd.
stratis implements the command-line interface, and converts commands into D-Bus API calls

to stratisd.
stratisd implements the D-Bus interface, and manages and monitors Stratis internal pool

blockdevs, as described below. It is started by the system and continues to run as long as Stratis
pools or blockdevs are present in the system.
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7 User Experience

Stratis has a command-line tool that enables the administrator to create a Stratis pool from one
or more blockdevs, and then allocate filesystems from the pool.

See reference implementation at https://github.com/stratis-storage/stratis-cli

for the most up-to-date status of the CLI design.
This component is not required to be installed, in cases such as an appliance where a higher-

level application such as Cockpit or Ansible uses the D-Bus API directly.

7.1 Known shortcomings

Stratis’ goal is to hide the complexity of its implementation from the user, but by using a
reuse/layering approach to its implementation, there will be places where Stratis’ implementation
details will peek through. This could cause user confusion, and also could threaten Stratis
integrity if the user makes changes.

• For Stratis filesystems, ’df’ will report the current used and free sizes as seen and reported
by XFS. This is not useful information, because the filesystem’s actual storage usage will
be less due to thin provisioning, and also because Stratis will automatically grow the
filesystem if it nears XFS’s currently sized capacity.

• Users should not try to reformat or reconfigure XFS filesystems that are managed by
Stratis. Stratis has no way to enforce this or warn the user to avoid this, other than in the
documentation.

• Stratis will use many device-mapper devices, which will show up in ‘dmsetup‘ listings and
/proc/partitions. Similarly, ‘lsblk‘ output on a Stratis system will reflect Stratis’ internal
workings and layers.

• Stratis requires a userspace daemon, which must remain running at all times for proper
monitoring and pool maintenance.

8 D-Bus Programmatic API

The Stratis service process exposes a D-Bus interface, for other programs to integrate support
for Stratis. This is considered the primary Stratis interface. The command-line tool uses the
D-Bus API.

8.1 Overview

The D-Bus API is part of stratisd. It is a thin layer that receives messages on the D-Bus,
processes them, transmits them to the Stratis engine, receives the results from the engine, and
returns the result to the invoker of the API. When processing method calls, its responsibilities
are confined to:

• Receiving arguments and verifying that they conform to the signature of the invoked
method.

• Transforming method arguments received on the D-Bus to arguments of the appropriate
type to be passed to engine methods.

• Converting tuple arguments used to represent non-mandatory arguments to values which
inhabit the Rust Option type.

• Invoking the appropriate engine methods and capturing their return values.

8
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• Marshalling the appropriate return values to place on the D-Bus along with the return
code and message.

• Adding or removing objects from the D-Bus tree.

The D-Bus API is implemented using the dbus-rs library4.
The Stratisd D-Bus API Reference Manual contains a description of the API.

8.2 D-Bus Access Control

8.2.1 Security Policy

Stratis D-Bus methods require root permissions.

8.2.2 Prevent Spoofing

9 Internals

Stratis internals aim to be opaque to the user. This allows its implementation maximum flexibility
to do whatever it needs in Stratis version 1, as well as to be extended in later versions without
violating any user-visible expectations.

9.1 Data Tier Requirements

The data tier of Stratis must manage blockdevs on behalf of the user to provide the following:

1. Managed filesystems that consume only as much space as the files they contain

2. Fast snapshots of existing filesystems

3. The ability to add (and eventually remove) individual blockdevs to grow the available space
available to filesystems

4. User-selectable redundancy level (per-pool granularity)5

5. Integrity checking6

6. Encryption7

9.2 Data Tier

The data tier achieves these requirements by layering device-mapper (DM) devices on top of the
pool’s blockdevs. The topmost layer consists of thin devices allocated from a thinpool. Stratis
initializes these thin devices with a filesystem, and manages the DM devices and filesystems to
meet the above requirements.

9.2.1 Layer 0: Blockdevs

This layer is responsible for discovering existing blockdevs in a pool, initializing and labeling
new blockdevs unambiguously as part of the pool, setting up any disk-specific parameters, and
storing pool metadata on each blockdev. The minimum blockdev size Stratis will use is 1 GiB.

Blockdev states

4https://github.com/diwic/dbus-rs
5in a future version
6in a future version
7in a future version

9

https://github.com/diwic/dbus-rs


State Description present good available in use

Missing Device is listed as a member of the
pool but not found

n n n n

Bad Device is found but cannot be used y n n n
Spare Device is usable but held in reserve y y n n

Not-in-use Device is usable but does not contain
data

y y y n

In-use Device is in use and contains data y y y y

9.2.2 Layer 1: Integrity (optional)8

This layer uses the dm-integrity target to enable the detection of incorrect data as it is read,
by using extra space to record the results of checksum/hash functions on the data blocks, and
then comparing the results with what the blockdev actually returned. This will enable Stratis to
detect data corruption when the pool is non-redundant, and to repair the corruption when the
pool is redundant. It should also be possible to use DIF9 information if present.

9.2.3 Layer 2: Redundancy (optional)10

A Stratis pool may optionally be configured to spread data across multiple physical disks, so that
the loss of any one disk does not cause data loss. Stratis uses conventional RAID technology
(1, 5, 6, 10, 1E11) as specified, and converts Layer 0 blockdevs into a smaller-sized amount of
storage with the specified raid properties.

Since Stratis supports more blockdevs than are RAID-able (generally 8 or fewer is best for
a raidset12), and differently-sized blockdevs, a redundant Stratis pool may contain multiple raid
sets (all of the same global type). Depending on layout, there may be some amount of space
in a pool’s blockdevs that cannot be used because it cannot be used in a RAID set. Stratis
will intensively manage raidsets, extending them across newly added blockdevs or creating new
raidsets; and handling the removal of blockdevs13. Stratis may use dm-raid’s reshape capabilities
when possible, although this changes the stripe size and could cause issues.

Stratis cannot support redundancy with a single disk, but we may wish to reserve the small
space for raid metadata and other uses even on one-disk Stratis pools. This will allow the pool
to be made redundant (in the version when we support this) without encountering ugly edge
cases.

9.2.4 Cache Tier (optional)

If present, the Cache Tier sits directly underneath the Flex Layer. Its structure is similar to the
lower levels of the Data Tier. See9.4 for more.

9.2.5 Layer 3: Flex

Whether blockdevs are part of raidsets or used directly, pools need to cope with the addition or
removal 14 of them.

Stratis allows adding a blockdev to an existing pool, and using it to grow the pool’s allocated
space.

Removal of a blockdev involves calculating if a blockdev can be removed from the pool with
no effect, removed with loss of redundancy, not removed without data loss, or if removal would

8in a future version
9See https://oss.oracle.com/projects/data-integrity/

10in a future version
11See ‘linux/Documentation/device-mapper/dm-raid.txt’ for more info
12More are supported by DM, but too many increase the likelihood of individual failures.
13in a future version
14in a future version
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be possible after a data movement and reorganization step. The data-movement capability could
also be used in the case of a failing disk.

Marking a newly-added blockdev as ‘spare’ would keep it in reserve so a failing disk can be
immediately removed and replaced without possibly exceeding total pool capacity in the interim.

The flexibility layer contains four linear DM devices made up of segments from lower-level
devices. The first two devices will be used by Layer 4 (Thin Provisioning) as metadata and data
devices. The flex layer will track what lower-level devices these are allocated from, and allow
the two devices to grow as needed.

The third linear DM device is a spare metadata device to be used in the case that the
metadata device requires offline repair. It will not usually be instantiated on the system, but
guarantees there is room if needed. This device’s size tracks the size of the metadata device,
both as initially allocated, and as the metadata device is extended.

The fourth and final linear DM device is used for the Metadata Volume (MDV, see 9.3.6).
The MDV is used to store metadata about upper layers, layer five and above.

All devices in this layer may be built on L0, L1, or L2 devices, depending on configuration.
The initial sizes of all flex layer devices should be chosen to allow an entire pool to fit within

a single blockdev of the minimum size (1 GiB).

9.2.6 Layer 4: Thin Provisioning

The two linear targets from L3 are used as metadata device and data device for a DM thinpool
device. The thinpool device implements a copy-on-write (CoW) algorithm, so that blocks in the
data device are only allocated as needed to back the thin volumes created from the thinpool.

Stratis manages the thinpool device by extending the two L3 subdevices when either runs
low on available blocks. If the pool approaches a point where the pool no longer has empty
lower-level space to extend onto, Stratis alerts the user and takes action to avoid data corruption.
Actions could include switching filesystems to read-only mode, running fstrim, or progressively
throttling writes.

9.2.7 Layer 5: Thin Volumes

Stratis creates thin volumes from the thin pool. It will automatically give a new volume a default
size, format it with a filesystem, and make it available to the user.

Stratis also enables creating a new volume as a read/write snapshot of an existing volume.
Although the underlying implementation does not require maintaining the relation between a
snapshot and its origin, Stratis records this relation in its metadata. This relation may be of
use to users who may, for example, use snapshots for backups and may make use of the origin
information to identify a particular backup snapshot to restore from.

9.2.8 Layer 6: Encryption (optional)15

Stratis may eventually enable per-filesystem encryption between the thin device and the filesys-
tem.

9.2.9 Layer 7: Filesystem

Stratis monitors each filesystem’s usage against its capacity and automatically extends them
online without user intervention. Extending involves changing the thin dev’s logical size, and
then using a tool such as xfs_growfs to grow the filesystem. Stratis also periodically will run
fstrim to reclaim unused space during idle periods. Idle periods will be found based upon current
and historical system I/O activity levels.

15in a future version
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9.3 Data Tier Metadata

Stratis must track the blockdevs that make up the data tier of the pool (L0), integrity parameters
(L1), the raidsets that are created from the data blockdevs (L2), the three linear targets that
span the L2 devices (L3), the thinpool device (L4) and the attributes of the thin devices (L5)
and filesystems created from the thinpool (L7).

9.3.1 Requirements

1. Uniquely identify a blockdev as used by Stratis, which pool it is a member of, and param-
eters needed to recreate all layers

2. Detect incomplete or corrupted metadata and recover via second copy

3. Allow for blockdevs being expanded underneath Stratis

4. Redundant on each blockdev to tolerate unreadable sectors16

5. Redundant across blockdevs to handle missing or damaged members. Can provide meta-
data of missing blockdevs

6. Handle thousand+ blockdevs in a pool

7. Handle million+ filesystems in a pool and updates without writing to each blockdev

8. Extensible/upgradable metadata format

9.3.2 Conventions

Sectors are 512 bytes in length17.
All UUIDs are written as un-hyphenated ASCII encodings of their lower-case hexadecimal

representation18.

9.3.3 Design Overview

Stratis metadata is in three places:

1. Blockdev Data Area (BDA)

(a) Signature Block within Static Header

(b) Metadata Area (MDA)

2. Metadata Volume (MDV)

(Specific DM targets such as raid, integrity, and thinpool also place their own metadata on disk.)
Information on levels 0-4 is duplicated across all blockdevs within a on-disk metadata format

called the Blockdev Data Area (BDA). The BDA consists of a binary Signature Block, and the
Metadata Area (MDA), which stores information in a text-based JSON format. Both the binary
and text-based portions of the BDA define redundancy and integrity-checking measures.

The Metadata Volume (MDV) stores metadata on Layers 5 and up in a conventional block
device and filesystem that is part of the Flex layer. Choosing to split overall metadata storage into
two schemes allows upper layers’ metadata to be free of limitations that would apply if a single

16Recovery from accidental start-of-blockdev overwrite by placing a second copy at the end of the disk was
also considered, but raised other issues that outweighed its benefit.

17Historically this is the minimum storage unit of a hard drive. Many Linux kernel APIs assume this value is
constant (as does this document), and use another term such as ’block size’ for dealing with cases where the
minimum storage unit is different.

18UUIDs are 128-bit values and therefore require only 16 bytes to represent their numeric value. However, since
each ASCII value requires a byte, and the hexadecimal representation of an 128-bit value requires 32 hexadecimal
digits, the chosen encoding requires 32 bytes.

12



scheme was used. For example, on-disk metadata formats find it hard to support runtime size
extension, may keep redundant copies to ensure reliability, and aggressively check for corruption.
This can work well with small amounts of data that is infrequently changed, but has trouble as
data grows, or we wish to do updates in-place.

Upper-level metadata can achieve redundancy and integrity by building on the pre-existing
lower layers, and work under looser restrictions around updating in place, and the total size to
which it may grow. It can reuse an existing, well-tested solution for solving data organization
and storage issues – a general-purpose filesystem.

9.3.4 BlockDev Data Area (BDA)

sector 0

16

Stratis on-disk Metadata format

Blockdev Data Area

(not to scale)

Static

Header}9

1

2048

2047

15

MDA

region 0

MDA

region 1

MDA

region 2

MDA

region 3

Signature Block copy 2

Signature Block copy 1

By default, BDA is 2048 

sectors (1 MiB), but may 

be larger (size of MDA 

given in Signature block 

plus 16 for Static Header)

n

Reserved

SpaceReserved Space size 

given in Signature Block

}BDA

Rest of blockdev, usable 

by upper layers

}MDA

Figure 2: BDA format

The BDA consists of a fixed-length Static Header of sixteen sectors, which contains two copies
of the Signature Block; and the metadata area (MDA), whose length is specified in the Signature
Block. These are written to the beginning of the blockdev as described below.

Stratis reserves the first 16 sectors of each blockdev for the Static Header. When initializing
or modifying the Signature Block, identical data is written to locations 1 and 2.

Static Header
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sector offset length (sectors) contents

0 1 unused
1 1 Signature Block location 1
2 7 unused
9 1 Signature Block location 2
10 6 unused

Signature Block

byte offset length (bytes) description

0 4 IEEE CRC32C of signature block (bytes at offset 4
length 508)

4 16 Stratis signature: ’!Stra0tis\x86\xff\x02^\x41rh’
20 8 Device size in 512-byte sectors (u64)
28 1 Signature Block version (u8) (value = 1)
29 3 unused
32 32 UUID of the Stratis pool
64 32 UUID of the blockdev
96 8 sector length of blockdev metadata area (MDA) (u64)
104 8 sector length of reserved space (u64)
112 8 flags (u64)
120 8 initialization time: UNIX timestamp (seconds since Jan 1

1970) using UTC (u64)
128 384 unused

• No flags are yet defined, so ’flags’ field is zeroed.

• All ’unused’ fields are zeroed, and are reserved for future use.

• If not zero, blockdev metadata area length (offset 96) must be a number divisible by four
of at least 2032.

• The BDA is followed immediately by reserved space, whose size is specified in the signature
block (offset 104).

• Minimum length of BDA (static header and MDA) plus Reserved Space is 2048 sectors (1
MiB).

• When a blockdev is removed from a pool, or is part of a pool that is destroyed, Stratis
wipes the Static Header.

• The purpose of the unused sectors is twofold. First, placing the Signature Block copy
locations in two separate 4K blocks helps to prevent a single bad write operation on 4K-
block disks from corrupting both copies. Second, using a single sector for the Signature
Block helps to minimize the likelihood of corruption on disks with 512 byte blocks.

• Each time that Stratis writes one or both Signature Block locations, it also zeroes the
unused sectors that share the same 4K block.

The MDA is divided into four equal-size regions, numbered 0-3. When updating metadata,
identical data is written to either the odd (1 and 3) or even (0 and 2) regions, chosen by
examining the timestamps and overwriting the older of two pairs.

Each MDA region’s update consists of a fixed-length MDA Region Header, followed by
variable-length JSON data.

MDA Region Header
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byte offset length (bytes) description

0 4 IEEE CRC32 covering remainder of MDA header
4 4 IEEE CRC32 covering JSON data
8 8 length of JSON data in bytes (u64)
16 8 UNIX timestamp (seconds since Jan 1 1970) using UTC

(u64)
24 4 nanoseconds (u32)
28 1 Region Header version (u8) (value = 1)
29 1 Variable-length metadata version (u8) (value = 1)
30 2 unused
32 variable JSON data

• Metadata updates write to the older of the odd or even MDA regions. This is determined
by lowest timestamp, and then lowest nanoseconds if timestamps are equal.

• MDA updates include the MDA Header, which includes the current time. However, if
using the current time would not result in the update having the latest time across all
MDA regions on all blockdevs in the pool, instead use a time of one nanosecond later than
the latest MDA region time across all blockdevs.

• The procedure for updating metadata is:

1. Determine which regions in the MDA to use (odd or even) as described above.

2. Write MDA header and JSON data to the first MDA region (0 or 1)

3. Perform a Flush/FUA

4. Write MDA header and JSON data to the second MDA region (2 or 3)

5. Perform a Flush/FUA

6. Repeat for additional blockdevs. Also see 9.3.7

• Multiple blockdevs being updated with the same metadata must write identical data to
each MDA region, but which regions (odd or even) is used may vary, if the blockdevs have
received differing numbers of metadata updates over time.

9.3.5 Metadata Area (MDA)

The MDA contains a JSON object that represents the pool’s overall configuration from L0 to
L4.

Top level objects:

key JSON type required description

name string y the name of the pool
backstore object y the block devices in the pool
flex_devs object y layout of the data and metadata linear

devices
thinpool_dev object y parameters of the thinpool device

backstore: An object describing the data tier and the cache tier.

key JSON type required description

data_tier object y the block devices in the data tier
cap object y the cap device, from which segments are

allocated to the flex layer
cache_tier object n the block devices in the cache tier

data_tier: An object describing the data tier.

15



key JSON type required description

blockdev object y Settings and mappings describing block
devices that make up the tier

integrity object n TBD settings and mappings associated
with integrity support

raid object n TBD settings and mappings associated
with redundancy (RAID) support

vdo object n TBD settings and mappings associated
with VDO

blockdev: An object describing physical block devices that make up the tier.

key JSON type required description

devs array y an array of base_block_dev objects
allocs array y an array of arrays of base_dev objects

base_dev: An object describing an allocation from a block device.

key JSON type required description

parent string y UUID of the device the segment is created from
start integer y the starting sector offset within the parent

device
length integer y the length in sectors of the segment

base_block_dev: An object describing a block device in the lowest layer.

key JSON type required description

uuid string y The UUID of the block device, as recorded in
its Signature Block

user_info string n user-provided information for tracking the
device

hardware_info string n uniquely identifying information for the
blockdev, such as SCSI VPD83 or serial number

integrity: (TBD) Settings and mappings associated with integrity support.

raid: (TBD) Settings and mappings associated with RAID support.

vdo: (TBD) Settings and mappings associated with VDO support.

cap: An object describing a view of the top-level linear device provided by the backstore to the
flex layer.

key JSON type required description

allocs array y an array of pairs of integers representing
the starting offset and length of an

allocation in sectors

cache_tier: An object describing the cache tier. Identical format to data_tier except VDO
layer is not supported.

flex_devs: An object with four keys that define the linear segments that make up each device
in the Flex layer.
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key JSON type required description

meta_dev array y an array of pairs of integers representing the
starting offset and length of an allocation in sectors

that make up the metadata volume (MDV)
thin_meta_dev array y an array of pairs of integers representing the

starting offset and length of an allocation in sectors
that make up the thin metadata device

thin_meta_dev_spare array y an array of pairs of integers representing the
starting offset and length of an allocation in sectors

that make up the thin metadata spare device
thin_data_dev array y an array of pairs of integers representing the

starting offset and length of an allocation in sectors
that make up the thin data device

thinpool_dev: An object that defines properties of the thinpool device.

key JSON type required description

data_block_size integer y the size in sectors of the thinpool
data block

9.3.6 Metadata Volume (MDV)

The Metadata Volume is formatted with an XFS filesystem that is used by Stratis to store
information on user-created thin filesystems (L5-L7). This information is stored in the filesystem
in a TBD format, maybe either an individual file-based scheme, or SQLite database.

9.3.7 The MDA and Very Large Pools

Stratis pools with very large numbers of blockdevs will encounter two issues. First, updating
the metadata on all blockdevs in the pool may become a performance bottleneck. Second, the
default MDA size may become inadequate to contain the information required.

To solve the first issue, Stratis caps the number of blockdevs that receive updated metadata
information. A reasonable value for this cap might be in the range of 6 to 10, and should
try to spread metadata updates across path-independent blockdevs, if this can be discerned, or
randomly. This limits excessive I/O when blockdevs are added or removed from the pool, but
maximizes the likelihood that up-to-date pool metadata is retrievable in case of failure.

To solve the second issue, Stratis monitors how large its most recent serialized metadata
updates are, and increases the size of MDA areas on newly added devices when a fairly low
threshold – %50 – is reached in comparison to the available MDA region size. This ensures that
by the time sufficient blockdevs have been added to the pool to be in danger of serialized JSON
data being too large, there are enough blockdevs with enlarged MDA space that they can be
used for MDA writes.

9.3.8 Metadata and Recovery

Bad things happen.
In order to recover from disk errors, Stratis uses CRCs over the critical L0-L4 metadata, and

writes duplicate copies to a single blockdev, as well as across multiple blockdevs, when possible.
It takes this approach – copies – rather than a mechanism that might make it possible to partially
repair corrupted metadata for three reasons:

1. This metadata is relatively small – it concerns disks and raidsets, of which the pool will
have only a small number, so having multiple entire copies isn’t terribly wasteful.

2. Partially reconstructed information has limited value. This is due to the layered nature of
Stratis. It’s not sufficient to know some subset of the device mapping levels. Since they
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are layered, recovering e.g. L0-L2 layouts allows no data to be recovered without also
knowing how L3 and L4 are mapped on top, and vice versa.

3. L0-L4 metadata should require relatively few updates per day, since the changes it would
reflect are blockdevs being added/removed from the pool, or thinpool data device expan-
sions. Infrequent updates reduces the likelihood of corruption19.

L5-L7 is stored on the Metadata Volume on an XFS filesystem. Partial data recovery of that
information is possible.

In addition to Stratis-specific metadata, device-mapper layers such as cache, raid, thin, as
well as XFS filesystems, all have their own metadata. Stratis would rely on running each of their
specific repair/fsck tools in case they reported errors.

9.4 Cache Tier

The Cache Tier is a secondary optional stack that, if present, sits underneath the Flex Layer,
and above the

9.4.1 Requirements

1. Caching may be configured for redundancy, or no redundancy.

2. Caching may be configured for write-back and write-through modes.

3. Stratis concatenates all cache blockdevs and uses the resulting device to cache the thinpool
device (L4). This lets all filesystems benefit from the cache.

4. Cache blocksize should match thinpool datablock size.

5. Removing cache tier comes with performance hit and “rewarming” phase

6. For write-back caching, Cache tier must be redundant if data tier is redundant.

9.5 Cache Tier Metadata

9.5.1 Cache Tier Metadata Requirements

1. Identify all blockdevs that are part of the pool’s cache tier, the configured redundancy
level, and other cache-specific configuration parameters (e.g. WT/WB, block size, cache
policy)

2. Cache tier supports up to 8 devices.

10 Implementation Details

10.1 ’stratis’ command-line tool

Stratis’ command-line tool is currently written in Python. Since this is only used after the system
is booted by the adminstrator, Python’s interpreted nature and overhead is not a concern.

19citation needed?
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10.2 stratisd

Stratisd needs to be implemented in a compiled language, in order to meet the requirement that
it operate in a preboot environment. A small runtime memory footprint is also important.

stratisd is written in Rust. The key features of Rust that make it a good choice for stratisd
are:

• Compiled with minimal runtime (no GC)

• Memory safety, speed, and concurrency

• Strong stdlib, including collections

• Error handling

• Libraries available for DBus, device-mapper, JSON serialization, and CRC

• FFI to C libs if needed

• Will be available on RHEL 7 in delivery timeframe; currently packaged in Fedora

Other alternatives considered were C and C++. Rust was preferred over them for increased
memory safety and productivity reasons.

10.3 device-mapper names

If stratisd terminates unexpectedly and is restarted, it needs to rebuild its knowledge of the
running system. This includes not only re-enumerating blockdevs to find Stratis pool members,
but also determining the current state of the device-mapper targets that make up pools. A
restarting stratisd needs to handle if none, some, or all of the expected DM devices are present,
and if present DM devices are working correctly, or in an error state.

To these ends, Stratis uses consistent naming for device-mapper targets. This lets stratisd
more easily determine if DM devices already exist, and avoids leaking old DM mappings.

10.3.1 Naming convention Requirements

• Globally unique

• Maximum 127 characters

• Differentiate between Stratis and other DM devices

• Forward-compatible to allow Stratisd updates

• Human-readable

• Easily parsable

10.3.2 Naming Convention

Stratis DM names consist of five required and two optional parts, separated by a ’-’.
Part Name Max length Required Description

1 stratis-id 7 y Universal DM differentiator: ’stratis’
2 format-version 1 y Naming convention version: ’1’
3 private 7 n Optional indicator ’private’
4 pool-id 32 y ASCII hex UUID of the associated pool
5 layer-name 16 y Name of the Stratis layer this device is in
6 layer-role 16 y Name of the role of the device within the layer
7 role-unique-id 40 n Role-specific unique differentiator between multiple

devices within the layer with the same role
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• The maximum length (adding 6 ’-’s as separator) is 125, to stay within the DM name limit
of 127 characters.

• “private” is included in names for DM devices that are internal and that should be excluded
from content scanning by tools such as blkid.

• Characters for each part are drawn solely from the character classes ’[a-z]’ and ’[0-9]’
except that part 7 may also use the ’-’ character. These restrictions meet D-Bus and udev
requirements20.)

10.3.3 Per-Layer Naming Definitions

Layer 0: Blockdev

Not needed.

Layer 1: Integrity

TBD

Layer 2: Redundancy

TBD

Layer 3: Flex

Private layer-name layer-role role-unique-id Description

y flex thinmeta (none) Linear device for thinpool metadata
y flex thindata (none) Linear device for thinpool data
y flex mdv (none) Linear device for Metadata Volume (MDV)

Example: stratis-1-private-2836fca3047bba22938475638abcd840-flex-thinmeta

Layer 4: Thinpool

Private layer-name layer-role role-unique-id Description

y thinpool pool (none) Thinpool device

Example: stratis-1-private-2836fca3047bba22938475638abcd840-thinpool-pool

Layer 5: Thin volume

Private layer-name layer-role role-unique-id Description

n thin fs 32-char ASCII hex fs UUID Thin volume

Example: stratis-1-2836fca3047bba22938475638abcd840-thin-fs-ca7efca3047bba22938475638abc3141

Layer 6: Encryption

TBD

10.4 device-mapper minimum version

Stratisd device-mapper minor version 37 or greater, for DM event poll() support and support for
event_nr in list_devices ioctl.

20See libdm/libdm-common.c _is_whitelisted_char() in the lvm2 code for more.
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10.5 OS Integration: Boot and initrd

Since we want to allow Stratis to be used for system files, Stratis needs to run in the initrd
preboot environment. This allows it to activate pools and filesystems so that they can be
mounted and accessible during the transition to the main phase of operation.

The use of D-Bus is not possible in the preboot environment. Therefore, Stratis must tolerate
its absence.

The most likely implementation of these requirements is a “boot-init” mode for Stratis, in
which it discovers blockdevs and activates pools, but does not connect to D-Bus, and then exits.
Then, as part of the systems main phase, Stratis will run again and stay running, in order to
handle pool monitoring and commands over D-Bus, as normal.

10.6 OS Integration: udev

The udev library “libudev” enables access to the udev device database. This allows library users
to enumerate block devices on the system, and includes attributes describing their contents, such
as what filesystem or volume manager signature was detected. (libudev uses libblkid for this,
which recently had Stratis signature support added.) The primary benefit of this is to perform
the time-consuming block device scan only once, and to alleviate library users from interpreting
block device contents.

On boot, Stratis uses libudev to enumerate Stratis block devices on the system, reads the
Stratis metadata from each, and activates pools that are complete. Later, during the main
running phase, Stratis monitors udev events for newly-added block devices, so that if missing
Stratis pool members are connected to complete a pool, the pool can be activated and used.

10.7 OS Integration: /dev entries

Stratis allows the user to create filesystems, which then can be mounted and used via mount(8)
and the fstab(5). Stratisd creates a /stratis directory. It creates /stratis/<poolname> for each
pool present on the system, and /stratis/<poolname>/<filesystemname> for each filesystem
within the pool. Changes such as creations, removals, and renames are reflected in the entries
under /stratis. These entries give the user a well-known path to a device to use for mounting
the Stratis filesystem. Filesystems may also be listed in /etc/fstab using XFS UUID.

10.8 Partial Pool Activation

Stratis must handle if some blockdevs that make up a pool are not present. Its initial policy is
not to activate a pool until all members are present. However, there are scenarios where this
may not be strictly necessary, such as a blockdev that has not had any Flex Layer allocations
on it, or (in Stratis 2.0) if redundancy allows the RAID Layer to function in a degraded state.
The initial policy will likely be modified over the course of development to accommodate these
cases.

10.9 Snapshots

Stratis’s current snapshot implementation is characterized by a few traits:

• A snapshot and its origin are not linked in lifetime. i.e. a snapshotted filesystem may live
longer than the filesystem it was created from.

• A snapshot of a filesystem is another filesystem.

• A filesystem may be snapshotted while it is mounted or unmounted.

• Each snapshot uses around half a gigabyte of actual backing storage, which is needed for
the XFS filesystem’s log.

These may change in the future.
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10.10 Backstore Internals

The backstore is divided into two tiers: the data tier, and an optional cache tier. Each tier has
its own set of physical block devices. The goal of each tier is to provide a single linear device
that the flex layer (or another tier) can easily build on top of.

A tier is created with a certain feature set, which results in an internal layering of devices as
needed to support those features. Features such as redundancy, integrity, and dedupe/compression.
The features a tier supports are fixed at tier creation time. However, the block devices that make
up the tier may change. A blockdev may increase in capacity, or new blockdevs may be added.

This requires each tier to support:

• Today

– add_blockdev (add a new blockdev to the tier)

– blockdevs (list/iterate)

• Near Future

– extend_blockdev (start using added space on a blockdev that has become larger)

• Far future

– prepare_to_remove_blockdev (move data off a blockdev in preparation for its re-
moval, if space is available elsewhere)

– remove_blockdev (remove a blockdev that has no data on it)

The tier includes optional internal support for multiple features, which also are implemented
using DM devices.

At the “bottom” of the tier are blockdevs. These blockdevs are mapped through layers that
add value, such as integrity or compression.

Each layer takes a list of blockdevs and converts it to a list of “better” blockdevs, whose
total size is likely different. (Integrity and raid will be smaller, vdo will present a single much
larger block device, etc.)

While each intermediate layer may provide an array of blockdevs, the “cap” layer of the tier
presents a single linear blockdev that maintains the location of each presented block and never
shrinks, and hides the interior complexity of the tier from upper users.

The ordering of layers (from bottom to top) within a tier is:

1. blockdev
Blockdevs supply available space to the tier. Blockdevs may grow, for example if they
happen to be further virtualized on top of a storage appliance, Amazon EBS, or Ceph
block storage.

2. integrity
When integrity=true, each blockdev’s usable space is mapped to the dm-integrity target,
which will slightly reduce usable space, and cause a performance hit, in order to detect
corruption on reads. It is believed that integrity devices cannot change size. Therefore,
extending a blockdev may require a second dm-integrity device be created.

3. raid
when raid=true, Stratis uses the dm-raid target to create software RAID in top of the de-
vices presented to it (These may be either “raw” blockdevs or integrity-enabled blockdevs.)
In order to maximize flexibility, Stratis creates multiple raidsets by defining a maximum
for each raid member’s size, as well as the number of members in a raidset. It also may
choose a raid member size smaller than the maximum, in order to ensure between 4-8
raidsets are created.
if additional block resources are made available, the raid layer constructs additional raid-
sets.
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4. vdo
When vdo=true, the vdo layer will concatenate the blockdevs it is given (if needed) of
any previously-mentioned type and create a single VDO device. The layer must manage
extending both the logical size (the top) in response to space requests from above, as well
as requesting additional space from lower layers to extend the physical size (the bottom)
if needed.

5. cap
If presented with more than one blockdev, or the blockdev has a nonzero offset, the “cap”
layer will ensure the Tier presents a single blockdev with consistent block mapping for use
above the tier by creating a Linear device that never relocates previously-mapped block
ranges.

10.10.1 Demand-based allocations

Layers should not consume the entire space available to them when constructing devices, but
instead grow existing mapped allocations (or create new ones) as the total demands of upper
layers grow larger. This is preferred over a “greedy” strategy because any mapping that is created
and has data on it must be maintained for the life of the pool. There’s no good way to tell when
blocks in an existing device mapping become used. Starting small and then growing allocations
gives each layer a way to track regions that can be reclaimed if needed. This will make eventual
support for blockdev removal easier.

Another reason is that space requirements may expand or shrink as a request passes down
the layers. For example, VDO may satisfy a request for more logical space without any additional
lower-level space needed. But, a small request to the RAID layer may require the construction
of an entirely new raidset with a large minimum size from unused space, if the layer’s existing
capacity is full.

10.10.2 Common Layer API

TBD

10.11 Operation States

When encountering errors, Stratis must handle them if possible, but there are also errors that are
severe enough to hamper Stratis’s ability to function. When these occur, instead of terminating,
Stratis continues by transitioning to a less-capable operation state. This allows some measure
of continued monitoring and enables its condition to be visible to the user through the API.

Stratis has operation states for the pools, meta and data extend, and also blockdevs (listed
on page 9).

10.11.1 Pool States

In addition to the main states a pool may be in, a Running pool may also be Complete or
Incomplete, and a Stopped pool may have one of several things preventing it from running.
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State Description Transitions To

Initializing Pool startup In progress Running, OutOfDataSpace,
ReadOnly, Failed

Running Pool is read/write - normal operation
state

OutOfDataSpace, ReadOnly, Failed,
Stopping

OutOfDataSpace Meta data may be changed - new
data may not be allocated. Data

device is update only

Running, ReadOnly, Failed, Stopping

ReadOnly Meta data may not be changed - data
is read only

Running, OutOfDataSpace, Failed,
Stopping

Failed All IO is failed Running, OutOfDataSpace,
ReadOnly, Stopping

Stopping Pool is in the teardown process

10.11.2 Pool Extend States

As filesystems write data, the meta and data devices backing the pool may need to be extended
to accomidate growing pool.

State Description Transitions To

Initializing Pool startup In progress Good, DataFailed, MetaFailed,
MetaAndDataFailed

Good Normal operation DataFailed, MetaFailed,
MetaAndDataFailed

DataFailed Extend of the pool data device failed Good, MetaAndDataFailed
MetaFailed Extend of the pool meta device failed Good, MetaAndDataFailed

MetaAndDataFailed Extend of both the meta and data
devices failed

Good, DataFailed, MetaFailed

10.11.3 Pool Space States

Pool space available also has several states it can be in. The pool may transition freely between
these. Being in a Critical state can result in the Pool State transitioning to Stopped/OutOfSpace.

State Description Action

Good Space available is above Low
threshold

None

Low Space available is below Low
threshold but above Critical

Alert the user, run maintenance
operations

Critical Space available below Critical
threshold

Alert the user of critical state, run
maintenance operations

Part IV

Development Plan

11 Delivery of Features

11.1 Stratis version 0.1

Simplest thing that does something useful

1. Create a pool

2. Destroy a pool
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3. Create a filesystem

4. Destroy a filesystem

5. List filesystems

6. Rename filesystems

7. List pools

8. Rename pools

9. List blockdevs in a pool

10. Redundancy level: none

11. D-Bus API

12. Command-line tool

13. Save/restore configuration across reboot

14. Initial disk labeling and on-disk metadata format

15. Error handling for missing, corrupted, or duplicate blockdevs in a pool

16. thin/cache metadata validation/check (i.e. call thin_check & cache_check)

11.2 Stratis version 0.5

Add cache tier & basic snapshot support

1. List cache blockdevs in a pool

2. Add cache blockdevs

3. Remove cache blockdevs

4. Write-through caching only

5. Create/destroy primary snapshots

6. Working D-Bus signals

11.3 Stratis version 1.0

Minimum Viable Product

1. Snapshot management: auto snaps, date-based culling, “promotion” from snap to “pri-
mary”

2. Monitor pool(s) for getting close to capacity, and do something (remount ro?) if danger-
ously full

3. Notification method to the user if pool is approaching user or system-defined capacity

4. Maintain filesystems: Grow a filesystem as it nears capacity

5. Maintain filesystems: Run fstrim periodically to release unused areas back to thinpool

6. Add and use an additional blockdev
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11.4 Stratis version 2.0

Add Redundancy Support

1. Remove an existing blockdev

2. Redundancy level: raid1

3. Redundancy level: raid5

4. Redundancy level: raid6

5. Redundancy level: raid10

6. Cache redundancy level: raid1

7. Write-through caching enabled

8. Quotas

9. Blockdev resize (larger)

10. Spares

11.5 Stratis version 3.0

Rough ZFS feature parity. New DM features needed.

1. Send/Receive

2. Integrity checking (w/ self-healing only if on raid)

3. Raid scrub

4. Compression

5. Encryption

6. Dedupe

7. Raid write log (on ssd? To eliminate raid write hole)

11.6 Stratis version 4.0

Future features and evolution

1. Change a pool’s redundancy level

2. Boot from a filesystem

3. Libstoragemgmt integration

4. Multipath integration

5. Tag-based blockdev and filesystem classification/grouping

6. Mirroring across partitions within a pool, for multi-site or across hw failure domains
(shelves/racks)

7. Support for byte-addressible persistent memory
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Appendices

A Initial options for adapting existing solutions

As part of early requirements-gathering, the team looked at existing projects in this space, both
as candidates for building upon to create a solution, as well as if an existing project could be
extended to meet the requirements.

A.1 Extending an existing project

A.1.1 SSM

System Storage Manager (SSM) provides a command line interface to manage storage in existing
technologies. Our interest in SSM was to determine if it would be an existing project we could
extend to meet our requirements.

SSM provides a unified interface for three different “backends”: LVM, Btrfs, and crypto.
However, if we wish to provide a simple, unified experience, the first step would likely be to pick
one of the backends and build around its capabilities. This eliminates complexity from the CLI --
no need for the user to pick a backend or encounter commands that happen to not work based
upon the chosen backend, but obviates much of the point of SSM.

SSM does not provide a programmatic API. It internally contains “ssmlib”, which could
be enhanced and exposed, but would be Python-only. ssmlib is also built around executing
command-line tools, which can cause issues.

SSM is not a daemon. We’d need to modify SSM to operate on a daemon model. An ongoing
presence is needed for fault monitoring but also automatic filesystem and thinpool extensions.

SSM doesn’t currently support RAID5/6, thin provisioning, or configuring a cache tier.
SSM is written in Python, which would limit its ability to be used in an early-boot environ-

ment.
SSM does not provide functionality for error recovery. If the storage stack encounters an

error the user has to use the individual tools in the stack to correct. Thus greatly diminishing
the ease of use aspect and value proposition of SSM.

Analysis

Extending SSM does not meet the requirements.

A.1.2 LVM2

Logical Volume Manager (LVM2) is the nearly universally-used volume manager on Linux. It
provides the “policy” that controls device-mapper. It adds:

• On-disk metadata format to save and restore configuration across boot

• Usage model built on Physical Volume, Volume Group, and Logical Volume (PV, VG, LV)
concepts.
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• A comprehensive set of command line tools for configuring linear, raid, thinpool, cache,
and other device-mapper capabilities

• Monitoring, error handling, and recovery

• LV resize; PVs may be added or removed from a VG

• Snapshots and thin snapshots

• Choice of user-guided or automatic allocation/layout within the VG

Analysis

Adding the capability to manage filesystems to LVM isn’t something that has been much con-
sidered. Extending LVM2 would make it very hard to achieve simplicity of interface, given the
conflicting requirement to maintain backwards compatibility with what LVM provides now.

A.2 Building upon existing projects

A.2.1 XFS

XFS is a highly respected non-volume-managing filesystem. To meet the goal of eliminating
manual filesystem resizing by the user, Stratis requires the filesystem used have online resize (or
at least online grow) capabilities, which XFS does. In the absence of online shrink, Stratis would
rely on trim to reclaim space from an enlarged but mostly empty filesystem, and return it to the
thin pool for use by other filesystems.

Use of XFS on top of thin provisioning also makes proper initial sizing important, as well
as choosing sizes for XFS on-disk allocations that match those used by the underlying thin-
provisioning layer, to ensure behavior with the two layers is optimal.

Analysis

XFS meets the requirements and currently seems like the best choice.

A.2.2 device-mapper

device-mapper is a framework provided by the Linux kernel for creating enhanced-functionality
block devices on top of physical block devices. These new devices can add support for RAID, thin
provisioning, encryption, multipath devices, caching devices, and more. The framework provides
the ability to configure and layer these capabilities, but no facilities for saving or restoring a
configuration. device-mapper provides mechanism, but no policy.

Analysis

Using devicmapper directly would require that an upper layer implement its own on-disk metadata
format and handle some tasks in a similar manner to LVM2.

A.2.3 LVM2

See A.1.2 for a description of LVM2 capabilities.
LVM is a mature software project that implements volume management. For Stratis, the

question is whether the benefits of internally using LVM2 outweigh the costs.
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Issues with Building on LVM2

Note: This assumes the implementation described in Part III.
Note: lvm-team has raised objections to items on this list.

• Policy+mechanism vs policy+policy+mechanism: LVM2 is configurable but has limita-
tions. e.g. we might wish to let the user define a block device as only to be used to
replace a failed disk in a raidset. However LVM raid_fault_policy=”allocate” will use any

free PV, not just one explicitly reserved.

• A good API needs the ability to convey meaningful and consistent errors for other appli-
cations to interpret. The lvm command line employs a simple exit code strategy. The
error reason is embedded in stderr in free form text that changes without notice. Thus
it is virtually impossible for any lvm command line wrapper to provide meaningful and
consistent error codes other than success or failure. Note: Lvm has recently added JSON
output which contains the ability to add more meaningful and useful error codes, but this
functionality is not implemented and non-trivial in scope to complete.

• lvm-dbus cannot be used because it requires Python and D-Bus, neither of which are
available in initrd

• Stratis-managed LVM2 devices would show up in LVM2 device & volume listings, which
would cause user confusion

• Using LVM2 for metadata tracking is good, but only if upper layer has no metadata storage
needs of its own. What about tags? Tags can’t store JSON objects since ’[]{},”’ are not
allowed in tags.

• LVM2 metadata format prevents new metadata schemes, such as tracking thin volumes
separately from PV metadata, or metadata backup copy not also at the tail of the blockdev.

• Use of new device-mapper features delayed by LVM2 implementation and release cycle.

• One big argument by LVM2 proponents is that LVM2 is a large, long-lived project that
has learned many things the hard way, and it would be foolish to abandon all that value
by starting over.

– Must we use the code, or can we take lessons from LVM2 devs and incorporate
them independently? Maybe fix some things that backwards-compatibility makes
impossible to fix in LVM2?

– Large parts of the codebase don’t benefit Stratis:

∗ File-based & configurable Locking: not needed since everything is serialized
through stratisd

∗ daemons/* including clvmd

∗ Udev: stratisd assumes udev & listens for udev events

∗ Filter/global_filter

∗ Caching: not needed, daemon is authoritative

∗ profiles

∗ preferred names ordering

∗ lvm.conf display settings: not needed, up to API client

∗ dev_manager: Stratis layers are predefined, much simpler

∗ config_tree

∗ report: beyond Stratis scope

∗ Command-line tools, option parsing: handled in cli, reduced in scope

∗ lib/misc/*: not needed or handled via libraries
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∗ Multi-metadata-format support

– What would Stratis benefit from?

∗ on-disk metadata format

∗ Best policy for duplicate/absent/corrupted block devices

∗ fault tolerance/recovery

∗ pool/snapshot monitoring

Analysis

While we cannot dismiss using LVM as an option for the future, currently there are some areas
that it does not meet Stratis requirements. There are also questions about the best way to
interface with LVM that need to be resolved prior to its adoption.

A.3 Conclusions

Based on looking at the existing available building blocks, the best option is to build Stratis
as a new project that initially makes use of XFS and device-mapper in its implementation. In
parallel, request enhancements to LVM2 to enable its substitution for device-mapper when the
enhancements are implemented. This lets Stratis proceed without delay to a point where it
can be placed in prospective users’ hands to start getting feedback, and will allow Stratis to
eventually use LVM2, and avoid duplicating functionality that LVM2 already provides.
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