
Stratis Coding Style Guidelines

Last modified: 02/27/2018

Contents

1 Introduction 1

2 Style (Rust) 1
2.1 Conventions (stratisd) . 2

3 Style (Python) 3

Asking Questions and Making Changes to this Doc-
ument

This document can be found in the stratis-docs repo, and is written using LYX
2.2.2. Please ask any questions by opening an issue, and propose changes as
pull requests.

1 Introduction

A consistent style helps legibility and saves developers from needing to think
about issues that are not really important.

For both Rust and Python, there are standard coding conventions, as well
as tools that help keep code consistent with these conventions that we will try
to use as much as possible. There are also some additional project-specific style
guidelines, which we will document here to help developers new to the project.

2 Style (Rust)

1. rustfmt (link) defines spacing, brace placement, and other formatting, and
should be followed (or automatically applied) for new Stratis code.

2. All new files must start with the 3-line license as a comment.

3. Ordering of “use” declarations

1

https://github.com/stratis-storage/stratis-docs/blob/master/docs/style/StratisStyleGuidelines.lyx
https://crates.io/crates/rustfmt

(a) “use” declarations within a module (such as a source file) should be
grouped into up to four sections:

i. declarations from “std”

ii. declarations from other external dependencies except for devicemap-
per

iii. devicemapper dependencies

iv. declarations from other modules in the same crate

as needed, separated by blank lines. Ordering within blocks is alpha-
betical.

(b) When importing multiple items from a module, group these with “{}”
on a single line. The items should be ordered alphabetically.

4. Use “expect()” instead of “unwrap()” to unwrap things that should always
succeed. “unwrap()” is not allowed in new code.

(a) Output from Linux kernel APIs is considered “super-stable” and should
be “expect”ed instead of returning a parse error.

(b) “expect()” text should say what “should never fail” condition was not
met to trigger it.

5. When implementing a trait, the methods should be ordered as they are
ordered in the trait definition.

6. TBD: Recommendations on when it’s time to break up a single module
(file) into submodules

7. TBD: Recommendations on when to define const variables versus when to
use string literals

2.1 Conventions (stratisd)

1. Stratisd has many instances of ranges of storage being allocated from other
things. This can become confusing. In naming methods that relate to this,
use the following conventions:

(a) A method that attempts to allocate some number of unit of stor-
age from an allocation pool container should be called “alloc” if the
method returns an error if the entire amount requested is not avail-
able. If a method returns a partial allocation if the entire amount is
not available, it should be called “request”.

(b) A method returning the total amount of storage units (i.e. sectors,
DataBlocks, or similar) in an allocation pool should be called “size”.

(c) A method returning the total usable amount of storage units – the
total number minus overhead (if any) – in an allocation pool should
be called “usable” or “usable_size”.

2

(d) A method returning the number of previously-unallocated storage
units should be called “available” or “avail_size”.

(e) A method returning the number of allocated storage units should be
called “allocated”.

3 Style (Python)

1. Follow PEP 8 (link).

2. Minimum supported Python version is 3.4.

3. Use list comprehensions instead of for-loops when possible. In places where
they can be used, comprehensions more clearly communicate the code’s
intent to filter and/or map a list into another list. Same goes for generator,
dict, and set comprehensions.

4. Do not use boolean overloading in conditionals unless the type of the
object is unknown. If the type of the object is known, use an explicit
comparison such as “is None” or “== []”. This way, if an object of an
unexpected type arrives, the comparison will generate an error instead of
a latent bug.

5. Use os.path methods when assembling or deconstructing paths. We are
not concerned with cross-platform usage, so this is for clarity, to make it
clear that it’s a path, not a string.

3

https://www.python.org/dev/peps/pep-0008/

	Introduction
	Style (Rust)
	Conventions (stratisd)

	Style (Python)

